Optical Wavelength Laboratories Presents

FIBER OWL 7+ TIER 2 FIBER OPTIC LINK CERTIFIER

 \bigcirc

CER

ACME CORP / HQ WEST M=COMPUTER ROOM I=NETWORK HUB 3 1310nm -0.24 dB PASS by 1.86dB 1550nm -0.23 dB PASS by 1.87dB Length: 100m WAVE: 1310 EIA/TIA 568C.3 CON: 2 INDOOR SM SPL: 2 ENTER TEST SAVE

 \bigcirc

FIBER#1

Compact size

New

- Color LCD display
- Breakthrough pricing
- Encircled Flux compliant
- Full-featured OTDR built-in
- Multiple versatile test modes
- Comprehensive OWLView Tri-report

Fiber OWL 7 + Series Test Kits

Fiber Optic Link Certifier

- Win more bids with TRI-reports!
- Easy to read color LCD
- Color-coded PASS/FAIL standards-based test results
- Full-featured OTDR built in!
- Tier 1 and Tier 2 Certification for both multimode and singlemode
- User-friendly diagrams guide users through the testing process!
- Factory located in the heartland of the US!

Win more bids! Clients are increasingly asking for OTDR and endface analysis in addition to certification reports. With OWLView software, technicians can provide clients with all three of these results on one single TRI-report!

Encircled Flux compliant. Encircled Flux (EF) compliance is the latest requirement for testing multimode networks designed for transmission of 10 Gigabits and beyond. When used with EF mode controller cables, Fiber OWL 7+ certifiers ensure high-speed multimode networks are compliant to standards-based EF requirements.

User-friendly setup and test procedures. Helpful diagrams on the screen prompt the user to connect the tester to the link as shown, and text-based help screens are available in case users have questions in the field.

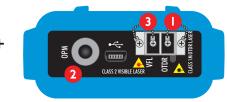
Affordability. Fiber OWL 7+ certifiers are a fraction of the cost of bulky over-priced certifiers, saving cost-conscious technicians and installers thousands of dollars that could be better used elsewhere.

Small, compact size. At nearly a third of the size and weight as compared to much bulkier ultra-expensive certifiers on the market, Fiber OWL 7+ certifiers are truly hand-held pocket-sized devices that can be operated in one hand!

NIST TRACEABLE

NIST Traceable. Like all OWL power meters and light sources, Fiber OWL 7+ certifiers are NIST-traceable, ensuring customers of reliable test results.

Optical Wavelength Laboratories Phone: 262-473-0643 Internet: OWL-INC.COM


Fiber OWL 7 + Series Test Kits

Fiber Optic Link Certifier

SPECIFICATIONS

3

Fiber OWL 7+ **Power Meter**

Display Type	2.8" Color LCD
Battery Type	Lithium Polymer
Battery Life	up to 50 hours
Auto-shutdown	Yes
Operating Temperature	-10 to 55° C
Storage Temperature	-30 to 70° C
Dimensions	2.87" x 4.42" x 1.25"
Weight	10 ounces (284 g)

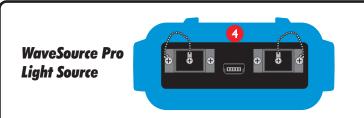
OPTICAL TIME DOMAIN REFELCTOMETER (OTDR)

		<u> </u>		
Fiber Type:	Multir	node	Single	mode
Output Wavelength:	850 nm	1300 nm	1310 nm	1550 nm
Dynamic Range (SNR=1) ¹ :	27 dB	29 dB	28 dB	27 dB
Distance Range ^₄ :	12 miles (20	kilometers)	80 miles (128	8 kilometers)
Event Dead Zone ² :		2 meters	(typical)	
Attenuation Dead Zone ³ :		5 meters	(typical)	
Maximum Data Points:		640	000	
Data Point Spacing:		eter	< 64 km: 1 meter /	> 64 km: 2 meters
Pulse Width:	1, 2, 5, 10, 20,	50, 100 meters	1, 2, 5, 10, 20, 50, 100), 200, 500, 1k meters
Index of Refraction:		1.4000 t	o 1.6000	
Distance Accuracy:	Up to 64km: 1 + (dist	ance in meters/10000)	/ Over 64km: 2 + (distar	nce in meters/10000)
Number of Stored Traces:	Maximum t	race distance: up to 200) / Minimum trace dista	nce: 3000+

1: Using maximum pulse width

2: Width measured 1.5dB down on each side of a reflective

event using 1 meter pulse width


3: Distance from event beginning to within 0.5dB where

backscatter resumes using 1 meter pulse width

4: Out to furthest reflective event

OPTICAL POWER METER (OPM	Л)
Detector Type	InGaAs
Wavelengths	850, 980, 1300, 1310, 1490, 1550, 1625 nm
Measurement Range	+5 to -70 dBm
Accuracy (Uncertainty)	±0.15 dB
Display Resolution	0.01 dB
Measurement Units	dBm, dB
Connector Type	2.5mm/1.25mm Universal
Data Storage Points	<10,000
Download Port Connection	USB
Software	OWLView
Modes of Operation	FULL, CERT, LOSS, OPM

VISUAL FAULT LOCAT	OR	
VFL Output	650 nm Laser	
VFL Output Power	1 mW	
VFL Operating Modes	CW, Modulated	
Connector	LC	

GENERAL	
Display Type	2.8" Color LCD
Battery Type	Lithium Polymer
Battery Life	up to 50 hours
Auto-shutdown	Yes
Operating Temperature	-10 to 55° C
Storage Temperature	-30 to 70° C
Dimensions	2.87" x 4.42" x 1.25"
Weight	10 ounces (284 g)

FIBER OPTIC LIGHT SOUR	GE			
Fiber Type:	Multi	mode	Single	emode
Source Type:	LE	ED	La	ser
Calibrated Wavelengths	850 nm	1300 nm	1310 nm	1550 nm
Output Power (CW)	-20	dBm	-10	dBm
Accuracy	±0.10 dB	@ 25°C	±0.10 dB	3 @ 25°C
Light Source Drift (1hr.)	±0.05 dB	±0.05 dB	±0.05 dB	±0.04 dB
Spectral Width (FWHM)	50nm	180nm	2nm	3nm
Modulation Frequencies		300 Hz / 600 Hz	z / 1 kHz / 2 kHz	

2

Optical Wavelength Laboratories Phone: 262-473-0643 Internet: OWL-INC.COM

OWL - The WISE choice in fiber test!

WIN MORE BIDS FOR YOUR COMPANY!

CLIENT INFO)	_	INSTA	LLER INF	0	_	ENFA	CE ANALYS	IS RESULT	
Name: Acme	Corp.			Fiber Inst			Model:	VS-400-U		
Phone: 555-5				555-555				S400-U-000		
E-mail: acme(@acme.com		E-mail:	fiber@in:	stallinc.com			f Test: Augus ule: IEC-613		
JOB INFO							CONT		00-3-33	
Name:		ACME WE				Control	D			
Location:		West Pl	ant Injector	End:		Admin	A 🗸			
LINK CERTIF	ICATION TEST	RESULT					B			
Date of Test:		August 31, 20	116 Model:			F7-PM	C V			
Test Rule:		EIA/TIA 5680				120335				
Test By:			WI Fiber Ty			/125µm OM4		- 1		
Fiber ID:	r	1-C2-R3-P4-Po	tto Ref. Me	thod:	1-jumper t	Encircled Flux				
DIRECTION		Co	ntrol -> Adm	in	Admin -> 0	Control	ADMIN			and the second s
Wavelength	_	850 r	m 130	00 mm	850 nm	1300 nm	A V	~		
LINK BUDGE		0.33 ((D)	14 dB	0.33 dB	0.14 dB	в 🗸	*		
Link Attenuation Connection Lo		1.50 (14 dB 50 dB	1.50 dB	1.50 dB	C 🗸	· · ·		
Splice Loss (2		0.60 (50 dB	0.60 dB	0.60 dB	D 🗸	1		
Overall Link B	kudget	2.43 (iB 2.:	24 dB	2.43 dB	2.24 dB				
Reference Le		-20.57 (70 dBm	-20.57 dBm	-20.07 dBm				
PASS/FAIL Th Optical Power	reshold Measurement	-23.00 (94 dBm 20 dBm	-23.00 dBm -21.75 dBm	-22.31 dBm -20.94 dBm	ZONE			
							A: 0	- 65 um	B: 65 - 120	μm
Optical Loss		1.00 (IB 0.:	50 dB	1.18 dB	0.87 dB			D: 100 00	Ó
Overhead PASS/FAIL Re Date of Test:	esult 09/30/2016	1.43 (Pass control -> Admi 3 Model / SN:	iB 1. Pa M	74 dB 188 02-835 / H	1.25 dB Pass 137777 Date of TDR TEST DATA	1.37 dB Pass Test: 09/	C: 1: Ad 30/2016 M	20 - 130 µm Imin -> Cont Model / SN:	trol WTO:	2-S35 / H3777
Overhead PASS/FAIL Re Date of Test: Wave 850nm	esult 09/30/2016 Loss 1.14 dB	1.43 (Pass ontrol -> Admi 3 Model / SN: ORL 47.88 dB	IB 1. Pa WTC IoR 1.4681	74 dB 195 02-S35 / F Backs -76	1.25 dB Pass 137777 Date of TDR TEST DATA scatter Wav 6 dB 850n	1.37 dB Pass Test: 09/ e Lo m 1.14	C: 1: Ad 30/2016 M 35 dB	20 - 130 µm Imin -> Cont Model / SN: ORL 47.88 dB	IoR 1.4681	2-S35 / H3773 Backscatte -76 dB
Overhead PASS/FAIL Re Date of Test: Wave	esult 09/30/2016 Loss	1.43 (Pass ontrol -> Admi 3 Model / SN: ORL	IB 1. Pa WTC IOR	74 dB 195 02-S35 / F Backs -76	1.25 dB Pass 137777 Date of 1 TDR TEST DATA scatter Waw dB 850n dB 1300r	1.37 dB Pass Test: 09/ e Lo m 1.14	C: 1: Ad 30/2016 M 35 dB	20 - 130 µm Imin -> Cont Model / SN: ORL	trol WTO: IoR	2-835 / H3777 Backscatte
Overhead PASS/FAIL Re Date of Test: Wave 850nm	esult 09/30/2016 Loss 1.14 dB	1.43 (Pass ontrol -> Admi 3 Model / SN: ORL 47.88 dB	IB 1. Pa WTC IoR 1.4681	74 dB 195 02-S35 / F Backs -76	1.25 dB Pass 137777 Date of TDR TEST DATA scatter Waw dB 850n i dB 1300r EVENTS	1.37 dB Pass Test: 09/ e Lo m 1.14 im 1.14	C: 1: AG 30/2016 M 35 dB dB dB	20 - 130 µm Imin -> Cont Model / SN: ORL 47.88 dB	IoR 1.4681	2-S35 / H3777 Backscatte -76 dB -76 dB
Overhead PASS/FAIL Re Date of Test: Wave 850nm 1300nm Location 0m	09/30/2016 Loss 1.14 dB 1.14 dB Loss (850)	1.43 (Pass ontrol -> Admi 3 Model / SN: ORL 47.88 dB 47.88 dB Loss (1300)	IB 1. Pe IOR 1.4681 1.4681 Refl (850)	74 dB 1955 02-S35 / H 0 Backs -76 -76 Refl (1.25 dB Pass 137777 Date of TDR TEST DAT/ dB 850n dB 1300r EVENTS 1300) Locati - 0m	1.37 dB Pass Test: 09// e Lo m 1.14 m 1.14 ion Loss -	C: 1: Ad 30/2016 M SS dB dB dB 850) L	20 - 130 µm min -> Con Model / SN: ORL 47.88 dB 47.88 dB .oss (1300)	IOR 1.4681 1.4681 Refl (850)	2-S35 / H3777 Backscatte -76 dB -76 dB Reft (1300
Overhead PASS/FAIL Re Date of Test: Wave 850nm 1300nm Location 0m 4m	esult 09/30/2016 Loss 1.14 dB 1.14 dB	1.43 (Pass ontrol -> Admit 3 Model / SN: ORL 47.88 dB 47.88 dB	IB 1. Pa U IOR 1.4681 1.4681	74 dB 1955 02-S35 / H 0 Backs -76 -76 Refl (1.25 dB Pass 137777 Date of TOR TEST DAT/ scatter Wav dB 850n 1 dB 1300r EVENTS 1300) Locatl - 0m 37 dB 4m	1.37 dB Pass e Lo m 1.14 m 1.14 on Loss - 0.42	C: 1: Ad 30/2016 M SS dB dB dB 850) L	20 - 130 µm Imin -> Con Model / SN: ORL 47.88 dB 47.88 dB	WTO: IOR 1.4681 1.4681	2-S35 / H3777 Backscatte -76 dB -76 dB Refl (1300
Overhead PASS/FAIL Re Date of Test: Wave 850nm 1300nm Location 0m	09/30/2016 Loss 1.14 dB 1.14 dB Loss (850)	1.43 (Pass ontrol -> Admi 3 Model / SN: ORL 47.88 dB 47.88 dB Loss (1300)	IB 1. Pe IOR 1.4681 1.4681 Refl (850)	74 dB 1955 02-S35 / H 0 Backs -76 -76 Refl (1.25 dB Pass 137777 Date of TDR TEST DAT/ dB 850n dB 1300r EVENTS 1300) Locati - 0m	1.37 dB Pass e Lo m 1.14 m 1.14 on Loss - 0.42	C: 1: Ad 30/2016 M SS dB dB dB 850) L	20 - 130 µm min -> Con Model / SN: ORL 47.88 dB 47.88 dB .oss (1300)	IOR 1.4681 1.4681 Refl (850)	2-S35 / H3777 Backscatte -76 dB -76 dB
Overhead PASS/FAIL Re Date of Test: Wave 850nm 1300nm Location 0m 4m	09/30/2016 Loss 1.14 dB 1.14 dB Loss (850)	1.43 (Pass ontrol -> Admi 3 Model / SN: ORL 47.88 dB 47.88 dB Loss (1300)	IB 1. Pe IOR 1.4681 1.4681 Refl (850)	74 dB 1955 02-S35 / H 0 Backs -76 -76 Refl (1.25 dB Pass 137777 Date of TOR TEST DAT/ scatter Wav dB 850n 1 dB 1300r EVENTS 1300) Locatl - 0m 37 dB 4m	1.37 dB Pass e Lo m 1.14 m 1.14 on Loss - 0.42	C: 1: Ad 30/2016 M SS dB dB dB 850) L	20 - 130 µm min -> Con Model / SN: ORL 47.88 dB 47.88 dB .oss (1300)	IOR 1.4681 1.4681 Refl (850)	2-S35 / H3777 Backscatte -76 dB -76 dB Reft (1300
Overhead PASS/FAIL Re Date of Test: Wave 850nm 1300nm Location 0m 4m	09/30/2016 Loss 1.14 dB 1.14 dB Loss (850)	1.43 (Pass ontrol -> Admi 3 Model / SN: ORL 47.88 dB 47.88 dB Loss (1300)	IB 1. Pa IOR 1.4681 1.4681 Refl (850)	74 dB 1955 02-S35 / H 0 Backs -76 -76 Refl (1.25 dB Pass 137777 Date of TOR TEST DAT/ scatter Wav dB 850n 1 dB 1300r EVENTS 1300) Locatl - 0m 37 dB 4m	1.37 dB Pass e Lo m 1.14 m 1.14 on Loss - 0.42	C: 1: Ad 30/2016 M SS dB dB dB 850) L	20 - 130 µm min -> Con Model / SN: ORL 47.88 dB 47.88 dB .oss (1300)	IOR 1.4681 1.4681 Refl (850)	2-S35 / H3777 Backscatte -76 dB -76 dB Reft (1300
Overhead PASS/FAIL Re Date of Test: Wave 850nm 1300nm Location 0m 4m	09/30/2016 Loss 1.14 dB 1.14 dB Loss (850)	1.43 (Pass ontrol -> Admi 3 Model / SN: ORL 47.88 dB 47.88 dB Loss (1300)	IB 1. Pa IOR 1.4681 1.4681 Refl (850)	74 dB 1955 02-S35 / H 0 Backs -76 -76 Refl (1.25 dB Pass 137777 Date of TOR TEST DAT/ scatter Wav dB 850n 1 dB 1300r EVENTS 1300) Locatl - 0m 37 dB 4m	1.37 dB Pass e Lo m 1.14 m 1.14 on Loss - 0.42	C: 1: Ad 30/2016 M SS dB dB dB 850) L	20 - 130 µm min -> Con Model / SN: ORL 47.88 dB 47.88 dB .oss (1300)	IOR 1.4681 1.4681 Refl (850)	2-S35 / H3777 Backscatte -76 dB -76 dB Reft (1300
Overhead PASS/FAIL Re Date of Test: Wave 850nm 1300nm Location 0m 4m	09/30/2016 Loss 1.14 dB 1.14 dB Loss (850)	1.43 (Pass ontrol -> Admi 3 Model / SN: ORL 47.88 dB 47.88 dB Loss (1300)	IB 1. Pa IOR 1.4681 1.4681 Refl (850)	74 dB 1955 02-S35 / H 0 Backs -76 -76 Refl (1.25 dB Pass 137777 Date of TOR TEST DAT/ scatter Wav dB 850n 1 dB 1300r EVENTS 1300) Locatl - 0m 37 dB 4m	1.37 dB Pass e Lo m 1.14 m 1.14 on Loss - 0.42	C: 1: Ad 30/2016 M SS dB dB dB 850) L	20 - 130 µm min -> Con Model / SN: ORL 47.88 dB 47.88 dB .oss (1300)	IOR 1.4681 1.4681 Refl (850)	2-S35 / H3777 Backscatte -76 dB -76 dB Refl (1300
Overhead PASS/FAIL Re Date of Test: Wave 850nm 1300nm Location 0m 4m	09/30/2016 Loss 1.14 dB 1.14 dB Loss (850)	1.43 (Pass ontrol -> Admi 3 Model / SN: ORL 47.88 dB 47.88 dB Loss (1300)	IB 1. Pa IOR 1.4681 1.4681 Refl (850)	74 dB 1955 02-S35 / H 0 Backs -76 -76 Refl (1.25 dB Pass 137777 Date of TOR TEST DAT/ scatter Wav dB 850n 1 dB 1300r EVENTS 1300) Locatl - 0m 37 dB 4m	1.37 dB Pass e Lo m 1.14 m 1.14 on Loss - 0.42	C: 1: Ad 30/2016 M SS dB dB dB 850) L	20 - 130 µm min -> Con Model / SN: ORL 47.88 dB 47.88 dB .oss (1300)	IOR 1.4681 1.4681 Refl (850)	2-S35 / H3777 Backscatte -76 dB -76 dB Refl (1300
Overhead PASS/FAIL Re Date of Test: Wave 850nm 1300nm Location 0m 4m	09/30/2016 Loss 1.14 dB 1.14 dB Loss (850)	1.43 (Pass ontrol -> Admi 3 Model / SN: ORL 47.88 dB 47.88 dB Loss (1300)	IB 1. Pa IOR 1.4681 1.4681 Refl (850)	74 dB 22-S35 / H 02-S35 / H 0 Backs -76 -76 -76 -76 -76 -76 -76 -76	1 28 dB Pass 437777 Date of 10Rt ESP DX/ 10Rt ESP DX/ 0 8 dB 13001 Locate 1 3001 Locate 1 300 1 cost 1 300	1.37 dB Pass e Lo m 1.14 m 1.14 on Loss - 0.42	C: 1: Ad 30/2016 M SS dB dB dB 850) L	20 - 130 µm min -> Con Model / SN: ORL 47.88 dB 47.88 dB .oss (1300)	IOR 1.4681 1.4681 Refl (850)	2-835 / H3777 Backscatte -76 dB -76 dB Refl (130 -47.37 dB
Overhoad PASS/FALL Re Date of Test: Wave 850nm 1300nm Location 0m 4m 95m	09/30/2016 Loss 1.14 dB 1.14 dB Loss (850)	1.43 (Pass ontrol -> Admi 3 Model / SN: ORL 47.88 dB 47.88 dB Loss (1300)	IB 1. Pa IOR 1.4681 1.4681 Refl (850)	74 dB 192-S35 / H Backs -76 -76 -76 -76 -76 -76 -77 -77	1 22 dB Pass 197777 Date of 107NE3517 CM2 Add 1300 EVENTS 1300 Local dat 95m - 0m 7 / 8 / 4m - 95m	1.37 dB Pass Test: 09/ e Loo m 1.144 on Los 	C: 1: Ad 30/2016 M SS dB dB dB 850) L	20 - 130 µm min -> Con Model / SN: ORL 47.88 dB 47.88 dB .oss (1300)	IOR 1.4681 1.4681 Refl (850)	
Overhead PASS/FAIL Re Date of Test: Wave 850nm 1300nm Location 0m 4m	09/30/2016 Loss 1.14 dB 1.14 dB Loss (850)	1.43 (Pass ontrol -> Admi 3 Model / SN: ORL 47.88 dB 47.88 dB Loss (1300)	IB 1. Pe IOR 1.4681 1.4681 Refl (850)	74 dB 192-S35 / H Backs -76 -76 -76 -76 -76 -76 -77 -77	1 28 dB Pass 137777 Date of 10R t637 DA7 dB 660n dB 13000 EVENTS 1300 Local - Om 77 dB 4 95m	1.37 dB Pass Test: 09/ e Loo m 1.144 on Los 	C: 1: Ad 30/2016 M SS dB dB dB 850) L	20 - 130 µm min -> Con Model / SN: ORL 47.88 dB 47.88 dB .oss (1300)	VTO: IOR 1.4681 1.4681 Refl (850)	
Overhead PASS/FALL Re Date of Test: Wave 850nm 1300nm Location 0m 4m 95m	09/30/2016 Loss 1.14 dB 1.14 dB Loss (850)	1.43 (Pass ontrol -> Admi 3 Model / SN: ORL 47.88 dB 47.88 dB Loss (1300)	IB 1. Pe IOR 1.4681 1.4681 Refl (850)	74 dB 192-S35 / H Backs -76 -76 -76 -76 -76 -76 -77 -77	1 22 dB Pass 197777 Date of 107NE3517 CM2 Add 1300 EVENTS 1300 Local dat 95m - 0m 7 / 8 / 4m - 95m	1.37 dB Pass Test: 09/ e Loo m 1.144 on Los 	C: 1: Ad 30/2016 M SS dB dB dB 850) L	20 - 130 µm min -> Con Model / SN: ORL 47.88 dB 47.88 dB .oss (1300)	VTO: IOR 1.4681 1.4681 Refl (850)	
Overhead PASS/FALL Re Date of Test: Wave 850nm 1300nm Location 0m 4m 95m	09/30/2016 Loss 1.14 dB 1.14 dB Loss (850)	1.43 (Pass ontrol -> Admi 3 Model / SN: ORL 47.88 dB 47.88 dB Loss (1300)	IB 1. Pe IOR 1.4681 1.4681 Refl (850)	74 dB 192-S35 / H Backs -76 -76 -76 -76 -76 -76 -77 -77	122 dB Pass 457777 Date of UDAte SF DATe of UDAte	1.37 dB Pass Test: 09/ e Loo m 1.144 on Los 	C: 1: Ad 30/2016 M SS dB dB dB 850) L	20 - 130 µm min -> Con Model / SN: ORL 47.88 dB 47.88 dB .oss (1300)	VTO: IOR 1.4681 1.4681 Refl (850)	
Overhead PASS/FALL Re Date of Test: Wave 850nm 1300nm Location 0m 4m 95m	09/30/2016 Loss 1.14 dB 1.14 dB Loss (850)	1.43 (Pass ontrol -> Admi 3 Model / SN: ORL 47.88 dB 47.88 dB Loss (1300)	IB 1. Pe IOR 1.4681 1.4681 Refl (850)	74 dB 192-S35 / H Backs -76 -76 -76 -76 -76 -76 -77 -77	122 dB Pass 457777 Date of UDAte SF DATe of UDAte	1.37 dB Pass Test: 09/ e Loo m 1.144 on Los 	C: 1: Ad 30/2016 M SS dB dB dB 850) L	20 - 130 µm min -> Con Model / SN: ORL 47.88 dB 47.88 dB .oss (1300)	VTO: IOR 1.4681 1.4681 Refl (850)	
Overhoad PASS/FAIL Re Date of Test: Wave 850nm 1300nm Location 0m 4m 95m	09/30/2016 Loss 1.14 dB 1.14 dB Loss (850)	1.43 (Pass ontrol -> Admi 3 Model / SN: ORL 47.88 dB 47.88 dB Loss (1300)	IB 1. Pe IOR 1.4681 1.4681 Refl (850)	74 dB 192-S35 / H Backs -76 -76 -76 -76 -76 -76 -77 -77	122 dB Pass 457777 Date of UDAte SF DATe of UDAte	1.37 dB Pass Test: 09/ e Loo m 1.144 on Los 0.429 a -	C: 1: Ad 30/2016 M SS dB dB dB 850) L	20 - 130 µm min -> Con Model / SN: ORL 47.88 dB 47.88 dB .oss (1300)	VTO: IOR 1.4681 1.4681 Refl (850)	
Overhead PASS/FALL R/ Date of Test: Wave 850nm 1300nm 1300nm 1300nm 1300nm 95m	09/30/2016 Loss 1.14 dB 1.14 dB Loss (850)	1.43 (Pass ontrol -> Admi 3 Model / SN: ORL 47.88 dB 47.88 dB Loss (1300)	IB 1. Pa IOR 1.4681 1.4681 Refl (850)	74 dB 192-S35 / H Backs -76 -76 -76 -76 -76 -76 -77 -77	1.25 d/B Pass 137777 Date of 1707 USE 0 Date of 1070 USE 0 Date of 1070 USE 0 Date of 1070 USE 0 Date of 1300 USE 0 Date of 13000 USE 0 Date of 13000 USE 0 Date of	1.37 dB Pass Test: 09/ e Loo m 1.144 on Los 0.429 a -	C: 1: Ad 30/2016 M SS dB dB dB 850) L	20 - 130 µm min -> Con Model / SN: ORL 47.88 dB 47.88 dB .oss (1300)	VTO: IOR 1.4681 1.4681 Refl (850)	2-S35 / H3777 Backscatte -76 dB -76 dB Reft (1300
Overhead PASS/FAIL R/ Date of Test: Wave 850mm 1300nm Location 0 m 4 m 95m	09/30/2016 Loss 1.14 dB 1.14 dB Loss (850)	1.43 (Pass ontrol -> Admi 3 Model / SN: ORL 47.88 dB 47.88 dB Loss (1300)	IB 1. Pa IOR 1.4681 1.4681 Refl (850)	74 dB 192-S35 / H Backs -76 -76 -76 -76 -76 -76 -77 -77	1.25 d/B Pass 137777 Date of 1707 USE 0 Date of 1070 USE 0 Date of 1070 USE 0 Date of 1070 USE 0 Date of 1300 USE 0 Date of 13000 USE 0 Date of 13000 USE 0 Date of	1.37 dB Pass Test: 09/ e Loo m 1.144 on Los 0.429 a -	C: 1: Ad 30/2016 M SS dB dB dB 850) L	20 - 130 µm min -> Con Model / SN: ORL 47.88 dB 47.88 dB .oss (1300)	VTO: IOR 1.4681 1.4681 Refl (850)	
Overhead PASS/FALL R/ Date of Test: Wave 850nm 1300nm 1300nm 1300nm 1300nm 95m	09/30/2016 Loss 1.14 dB 1.14 dB Loss (850)	1.43 (Pass ontrol -> Admi 3 Model / SN: ORL 47.88 dB 47.88 dB Loss (1300)	IB 1. Pa IOR 1.4681 1.4681 Refl (850)	74 dB 192-S35 / H Backs -76 -76 -76 -76 -76 -76 -77 -77	1.25 g/B Pass 137777 Date of 170 1078 US1 2010 1078 US1 2010 48 g/S d/S d/S d/S d/S d/S d/S d/S d/S d/S d	1.37 dB Pass Test: 09/ e Loo m 1.144 on Los 0.429 a -	C: 1: Ad 30/2016 M SS dB dB dB 850) L	20 - 130 µm min -> Con Model / SN: ORL 47.88 dB 47.88 dB .oss (1300)	IOR 1.4681 1.4681 Refl (850)	

OWLView TRI-REPORT CERTIFICATION · OTDR · ENDFACE

- Win more bids for your company
- Required for cabling system warranties
- Superior to qualification test results

Tri-report. Sooner or later, technicians will be required to provide their clients with comprehensive certification reports that include link certification results, OTDR traces and events, and endface analysis.

OWLView software gathers together all three of these critical data and formats them onto one single-page "Tri-report".

Link certification provides clients with a PASS/FAIL test result, ensuring that fiber links are installed and tested according to popular industry standards, including TIA-568 and various levels of Ethernet.

When used with a corresponding light source, Fiber OWL 7 certifiers allow users to certify multimode and/or singlemode optical fiber links.

Many clients are also requesting **OTDR traces** for the purpose of "link characterization"; i.e. a visual "roadmap" of the fiber link. OTDR traces include a graphical representation of the fiber link that shows the different "events" in the fiber link including patch panels, and event tables show the relative loss of individual events.

OWLView software allows users to import OTDR traces taken with OWLTrek 2 OTDRs, and appends the traces to the link certification report.

Clients are also interested in seeing the quality of their fiber endfaces at the time of testing. **Endface analysis** digitally inspects a fiber endface image for scratches and defects that may adversely affect data transmission.

OWLView software includes PASS/FAIL endface analysis based on the popular IEC 61300-3-35 endface inspection standard, and can analyze JPG endface images taken with any fiber videoscope.

Optical Wavelength Laboratories Phone: 262-473-0643 Internet: OWL-INC.COM

OWL - The WISE choice in fiber test!